Optimization of non-natural nucleotides for selective incorporation opposite damaged DNA.


The promutagenic process known as translesion DNA synthesis reflects ...
The promutagenic process known as translesion DNA synthesis reflects the ability of a DNA polymerase to misinsert a nucleotide opposite a damaged DNA template. To study the underlying mechanism of nucleotide selection during this process, we quantified the incorporation of various non-natural nucleotide analogs opposite an abasic site, a non-templating DNA lesion. Our kinetic studies using the bacteriophage T4 DNA polymerase reveal that the pi-electron surface area of the incoming nucleotide substantially contributes to the efficiency of incorporation opposite an abasic site. A remaining question is whether the selective insertion of these non-hydrogen-bonding analogs can be achieved through optimization of shape and pi-electron density. In this report, we describe the synthesis and kinetic characterization of four novel nucleotide analogs, 5-cyanoindolyl-2'-deoxyriboside 5'-triphosphate (5-CyITP), 5-ethyleneindolyl-2'-deoxyriboside 5'-triphosphate (5-EyITP), 5-methylindolyl-2'-deoxyriboside 5'-triphosphate (5-MeITP), and 5-ethylindolyl-2'-deoxyriboside 5'-triphosphate (5-EtITP). Kinetic analyses indicate that the overall catalytic efficiencies of all four nucleotides are related to their base-stacking properties. In fact, the catalytic efficiency for nucleotide incorporation opposite an abasic site displays a parabolic trend in the overall pi-electron surface area of the non-natural nucleotide. In addition, each non-natural nucleotide is incorporated opposite templating DNA approximately 100-fold worse than opposite an abasic site. These data indicate that selectivity for incorporation opposite damaged DNA can be achieved through optimization of the base-stacking properties of the incoming nucleotide.




Nucleotide Analogs / Template Lesions, Nucleotide Incorporation


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.