Stereochemical course of nucleotidyl transfer catalyzed by bacteriophage T7 induced DNA polymerase.

Abstract:

The bacteriophage T7 induced DNA polymerase, consisting of the phage specified gene 5 protein associated with Escherichia coli thioredoxin, catalyzes the copolymerization of SP-dATP alpha S with dTTP, producing the alternating of polymer poly[dTs-A)] by a mechanism involving inversion of configuration at P alpha. Degradation of poly[d(5s-A)] by the nucleolytic action of E. coli DNA polymerase produced the dinucleotide pdTps-dA, whose configuration at the phosphorothioate diester was assigned as R by comparison of the phosphorus-31 nuclear magnetic resonance chemical shift (55.0 ppm downfield from H3PO4) with that of an authentic sample. Further degradation by alkaline phosphatase to Rp-dTps-dA (55.6 ppm downfield from H3PO4) confirmed the configuration. The stereochemistry provides no evidence of a double displacement mechanism.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.