Cidofovir and (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine are highly effective inhibitors of vaccinia virus DNA polymerase when incorporated into the template strand.
Antimicrob Agents Chemother (2008), Volume 52, Page 586
Abstract:
The acyclic nucleoside phosphonate drug (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine [(S)-HPMPA], is a broad-spectrum antiviral and antiparasitic agent. Previous work has shown that the active intracellular metabolite of this compound, (S)-HPMPA diphosphate [(S)-HPMPApp], is an analog of dATP and targets DNA polymerases. However, the mechanism by which (S)-HPMPA inhibits DNA polymerases remains elusive. Using vaccinia virus as a model system, we have previously shown that cidofovir diphosphate (CDVpp), an analog of dCTP and a related antiviral agent, is a poor substrate for the vaccinia virus DNA polymerase and acts to inhibit primer extension and block 3'-to-5' proofreading exonuclease activity. Based on structural similarities and the greater antiviral efficacy of (S)-HPMPA, we predicted that (S)-HPMPApp would have a similar, but more pronounced effect on vaccinia polymerase than CDVpp. Interestingly, we found that (S)-HPMPApp is a good substrate for the viral enzyme, exhibiting K(m) and V(max) parameters comparable to those of dATP, and certainly not behaving like CDVpp as a functional chain terminator. Metabolic experiments indicated that (S)-HPMPA is converted to (S)-HPMPApp to a much greater extent than CDV is converted to CDVpp, although both drugs cause identical effects on virus DNA replication at their 50% effective concentration. Subsequent studies showed that both compounds can be faithfully incorporated into DNA, but when CDV and (S)-HPMPA are incorporated into the template strand, both strongly inhibit trans-lesion DNA synthesis. It thus appears that nucleoside phosphonate drugs exhibit at least two different effects on DNA polymerases depending upon in what form the enzyme encounters the drug.
Polymerases:
Topics:
Modulators/Inhibitors, Kinetic Parameters, Nucleotide Analogs / Template Lesions, Fidelity, Nucleotide Incorporation, Exonuclease Activity, Enzyme Substrate Interactions
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.