Inhibition of HSV-1 replication and HSV DNA polymerase by the chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl) quinoline-3-carboxylic acid and its aglycone.

Abstract:

We describe in this paper that the synthetic chloroxoquinolinic ...
We describe in this paper that the synthetic chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl) quinoline-3-carboxylic acid (compound A) and its free aglycogene base (compound B) inhibit, with low cytotoxicity, the replication of herpes simplex virus type 1 and 2 (HSV-1 and HSV-2). Compound A inhibited HSV-1 replication in Vero cells with an EC(50) of 1.3 and 1.4 microM for an acyclovir (ACV)-sensitive strain and an ACV-resistant strain of this virus, respectively. Additionally, it inhibited HSV-2 replication with an EC(50) of 1.1 microM. Compound B also inhibited the ACV-sensitive and -resistant HSV-1 strains, and HSV-2 at EC(50) values of 1.7, 1.9 and 1.6 microM, respectively. Time-of-addition assays, performed with compound A, suggested that this molecule at an early time point of the HSV replication cycle. Kinetic assays demonstrated that compounds A and B inhibit the HSV DNA polymerase activity in a noncompetitive fashion, with a K(i) equal to 0.1 and 0.2 microM, respectively. Taken together, our results suggest that compounds A and B represent promising lead molecules for further anti-HSV drug design.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.