"False" thymine-1H-Enol guanine base pair. low misinsertion rate by DNA polymerase explained by computational chemistry consideration.


Formation of correct TA and GC and "false" thymine-1H-enol guanine ...
Formation of correct TA and GC and "false" thymine-1H-enol guanine (TGenol) base pairs is here considered to control nucleotide insertion into DNA via low substrate concentration Michaelis-Menten controlled kinetics. Contributions of base pairing to formation of Gibbs free energies in water solution, DeltaDeltaG, are calculated for the correct and false base pairs with the semi-empiric MNDO/PM3 method for base pairing energies in vacuum and the BEM method for hydration effects. The results for DeltaDeltaG indicate equal insertion rates for correct base pairing and a 10(-3)-10(-4) error probability for false insertion controlled by the TGenol false pair.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.