Decreased PARP-1 levels accelerate embryonic lethality but attenuate neuronal apoptosis in DNA polymerase beta-deficient mice.
Biochem Biophys Res Commun (2007), Volume 354, Page 656
Abstract:
In mammalian cells, DNA polymerase beta (Polbeta) and poly(ADP-ribose) polymerase-1 (PARP-1) have been implicated in base excision repair (BER) and single-strand break repair. Polbeta knockout mice exhibit extensive neuronal apoptosis during neurogenesis and die immediately after birth, while PARP-1 knockout mice are viable and display hypersensitivity to genotoxic agents and genomic instability. Although accumulating biochemical data show functional interactions between Polbeta and PARP-1, such interactions in the whole animal have not yet been explored. To study this, we generate Polbeta(-/-)PARP-1(-/-) double mutant mice. Here, we show that the double mutant mice exhibit a profound developmental delay and embryonic lethality at mid-gestation. Importantly, the degree of the neuronal apoptosis was dramatically reduced in PARP-1 heterozygous mice in a Polbeta null background. The reduction was well correlated with decreased levels of p53 phosphorylation at serine-18, suggesting that the apoptosis depends on the p53-mediated apoptosis pathway that is positively regulated by PARP-1. These results indicate that functional interactions between Polbeta and PARP-1 play important roles in embryonic development and neurogenesis.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.