The pH-dependent mismatch formation by DNA polymerase eta.


To clarify the molecular mechanism of mismatch formation by DNA ...
To clarify the molecular mechanism of mismatch formation by DNA polymerase eta, the pH-dependency of misincorporation of dNTP was studied with the synthetic template-primer. Incorporation of dNTP formed Watson-Crick type base pair, such as the incorporation of dATP opposite template T, was slightly affected by pH between 6.5 to 9.0. On the other hand, the misincorporation rate of dGTP opposite template T by DNA polymerase eta was drastically increased according to the increasing pH. Kinetical analysis revealed that this change might be due to the change of Km value for dGTP rather than that of Vmax value. This suggests that the affinity of dGTP on DNA polymerase eta during the mismatch formation with template T should be affected by pH.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.