Chlamydial DNA polymerase I can bypass lesions in vitro.
Biochem Biophys Res Commun (2006), Volume 345, Page 1083
Abstract:
We found that DNA polymerase I from Chlamydiophila pneumoniae AR39 (CpDNApolI) presents DNA-dependent DNA polymerase activity, but has no detectable 3' exonuclease activity. CpDNApolI-dependent DNA synthesis was performed using DNA templates carrying different lesions. DNAs containing 2'-deoxyuridine (dU), 2'-deoxyinosine (dI) or 2'-deoxy-8-oxo-guanosine (8-oxo-dG) served as templates as effectively as unmodified DNAs for CpDNApolI. Furthermore, the CpDNApolI could bypass natural apurinic/apyrimidinic sites (AP sites), deoxyribose (dR), and synthetic AP site tetrahydrofuran (THF). CpDNApolI could incorporate any dNMPs opposite both of dR and THF with the preference to dAMP-residue. CpDNApolI preferentially extended primer with 3'-dAMP opposite dR during DNA synthesis, however all four primers with various 3'-end nucleosides (dA, dT, dC, and dG) opposite THF could be extended by CpDNApolI. Efficiently bypassing of AP sites by CpDNApolI was hypothetically attributed to lack of 3' exonuclease activity.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.