Genetic and physical interactions between Schizosaccharomyces pombe Mcl1 and Rad2, Dna2 and DNA polymerase alpha: evidence for a multifunctional role of Mcl1 in DNA replication and repair.


Schizosaccharomyces pombe rad2 is involved in Okazaki fragments ...
Schizosaccharomyces pombe rad2 is involved in Okazaki fragments processing during lagging-strand DNA replication. Previous studies identified several slr mutants that are co-lethal with rad2Delta and sensitive to methyl methanesulfonate as single mutants. One of these mutants, slr3-1, is characterized here. Complementation and sequence analyses show that slr3-1 (mcl1-101) is allelic to mcl1(+), which is required for chromosome replication, cohesion and segregation. mcl1-101 is temperature-sensitive for growth and is highly sensitive to DNA damage. mcl1 cells arrest with 2C DNA content and chromosomal DNA double-strand breaks accumulate at the restrictive temperature. Mcl1p, which belongs to the Ctf4p/SepBp family, interacts both genetically and physically with DNA polymerase alpha. Mutations in rhp51 and dna2 enhance the growth defect of the mcl1-101 mutant. These results strongly suggest that Mcl1p is a functional homologue of Saccharomyces cerevisiae Ctf4p and plays a role in lagging-strand synthesis and Okazaki fragment processing, in addition to DNA repair.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.