The role of DNA polymerase eta in UV mutational spectra.


UV irradiation generates predominantly cyclobutane pyrimidine dimers ...
UV irradiation generates predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine-thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase eta (Pol eta) dependent process. Pol eta is encoded by the POLH (XPV) gene in humans. In order to clarify the specific role of Pol eta in UV mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector which replicates in mammalian cells. This strategy provides an advantage over studying mutagenesis in cell lines derived from normal individuals and XP-V patients, since the genetic background of the cells is identical. Synthetic RNA duplexes were used to inhibit Pol eta expression in 293T cells. The reduction of Pol eta mRNA and protein was greater than 90%. The supF shuttle vector was irradiated with UVC and replicated in 293T cells in presence of anti-Pol eta siRNA. The supF mutant frequency was increased by up to 3.6-fold in the siRNA knockdown cells relative to control cells confirming that Pol eta plays an important role in mutation avoidance and that the pol eta knockdown was efficient. UV-induced supF mutants were sequenced from siRNA-treated cells and controls. Surprisingly, neither the type of mutations nor their distribution along the supF gene were substantially different between controls and siRNA knockdown cells and were predominantly C to T and CC to TT transitions at dipyrimidine sites. The data are compatible with two models. (i) Incorrect replication of cytosine-containing photoproducts by a polymerase other than Pol eta produces similar mutations as when Pol eta is present but at a higher frequency. (ii) Due to lack of Pol eta or low levels of remaining Pol eta, lesion replication is delayed allowing more time for cytosine deamination within CPDs to occur. We provide proof of principle that siRNA technology can be used to dissect the in vivo roles of lesion bypass DNA polymerases in DNA damage-induced mutagenesis.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.