To elucidate the behavior of DNA polymerase eta against the oxidized purine nucleotides, we determined the utilization efficiency of 2-hydroxy-dATP and 8-hydroxy-dGTP by the recombinant yeast DNA polymerase eta using the primer extension assay with the synthetic oligonucleotide template-primers, and compared those by DNA polymerase alpha. Results indicate that DNA polymerase eta incorporates 2-hydroxy-dATP opposite template G in addition to template T and 8-hydroxy-dGTP opposite A in addition to C, respectively. Kinetic analysis revealed that the rate of mutation caused by 2-OH-dATP and 8-OH-dGTP with DNA polymerase eta should be much higher than those with DNA polymerase alpha.