Long and accurate PCR with a mixture of KOD DNA polymerase and its exonuclease deficient mutant enzyme.


DNA polymerase from Thermococcus kodakaraensis KOD1 (previously ...
DNA polymerase from Thermococcus kodakaraensis KOD1 (previously Pyrococcus sp. KOD1) is one of the most efficient thermostable PCR enzymes exhibiting higher accuracy and elongation velocity than any other commercially available DNA polymerase [M. Takagi et al. (1997) Appl. Environ. Microbiol. 63, 4504-4510]. However, when long distance PCR (>5 kbp) was performed with KOD DNA polymerase, amplification efficiency (product yield) becomes lower because of its strong 3'-5' exonuclease activity for proof-reading. In order to improve a target length limitation in PCR, mutant DNA polymerases with decreased 3'-5' exonuclease activity were designed by substituting amino acid residues in conserved exonuclease motifs, Exo I (Asp141-Xaa-Glu), Exo II (Asn210-Xaa-Xaa-Xaa-Phe-Asp), and Exo III (Tyr311-Xaa-Xaa-Xaa-Asp). Exonuclease activity and amplification fidelity (error rate) of the DNA polymerases were altered by mutagenesis. However, long and accurate PCR by a single-type of mutant DNA polymerase was very difficult. The wild-type DNA polymerase (WT) and its exonuclease deficient mutant (N210D) were mixed in different ratio and their characteristics in PCR were examined. When the mixed enzyme (WT and N210D) was made at the ratio of 1:40, long PCR (15 kbp) at lower mutation frequency could be efficiently achieved.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.