Inactivation of Escherichia coli DnaA protein by DNA polymerase III and negative regulations for initiation of chromosomal replication.

Katayama T, Sekimizu K
Biochimie (1999), Volume 81, Page 835
PubMed entry


Genetic and biochemical evidence indicates that initiation of ...
Genetic and biochemical evidence indicates that initiation of chromosomal replication in Escherichia coli occurs in a nucleoprotein complex at the replication origin (oriC) formed with DnaA protein. The frequency of initiation at oriC is tightly regulated to only once per chromosome per cell cycle. To prevent untimely, extra initiations, negative control for initiation is indispensable. Recently, we found that the function of the initiator protein, DnaA, is controlled by DNA polymerase III holoenzyme, the replicase of the chromosome. The ATP-bound form of DnaA protein, an active form for initiation, is efficiently converted to the ADP bound form, an inactive form, since a subunit of the polymerase loaded on DNA (beta subunit sliding clamp) stimulates hydrolysis of ATP bound to DnaA protein. Comparison of this system, RIDA (regulatory inactivation of DnaA), with other systems for negative regulation of initiation is included in this review, and the roles of these systems for concerted control for initiation during the cell cycle are discussed.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.