Catalytic center of DNA polymerase beta for excision of deoxyribose phosphate groups.


The amino-terminal 8-kDa domain of vertebrate DNA polymerase beta (pol ...
The amino-terminal 8-kDa domain of vertebrate DNA polymerase beta (pol beta) has an activity to excise deoxyribose phosphate (dRP) groups from 5'-incised apurinic/apyrimidinic (AP) sites during base excision repair. The excision reaction proceeds via a beta-elimination reaction following formation of a Schiff base between an aldehyde group of the AP site and an amino group of the enzyme. Here we report that the Lys-72 residue of this enzyme is the catalytic center for dRP excision. Substitutions of Lys-72 with Arg or Gln reduced the dRP excision activity to less than 1% of the wild-type 8-kDa domain, while substitutions of Lys-35, Lys-68, or Lys-84 did not abolish its activity. The Lys-72 mutations also significantly decreased Schiff base intermediates trapped by reduction with sodium borohydride. The 8-kDa domain alone was able to bind preferentially to a single-nucleotide gap or 5'-incised synthetic AP site on double-stranded DNA. The Lys-72 mutations did not affect this damage-specific DNA binding activity. When introduced into the intact enzyme, a mutation of Lys-72 to Arg did not affect DNA synthesis activity of pol beta, but eliminated the repair activity. Addition of the wild-type 8-kDa domain to this reaction restored the repair activity. These results indicate a specific role of Lys-72 of pol beta in the dRP excision during base excision repair.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.