Purification and characterization of DNA polymerase alpha-associated replication protein A-dependent yeast DNA helicase A.


A novel, eukaryotic, hexameric DNA helicase that was earlier ...
A novel, eukaryotic, hexameric DNA helicase that was earlier identified as a component of the multiprotein polymerase alpha complex [Biswas et al. (1993) Biochemistry 32, 13393-13398] has been purified to homogeneity and characterized. Thus far, our studies demonstrated that helicase A shares certain unique features of two other hexameric DNA helicases: the DnaB helicase of Escherichia coli and the T-antigen helicase of the SV40 virus. The helicase activity was stimulated by yeast replication protein A (RPA) and to a lower extent by E. coli single-stranded DNA binding protein (SSB). The helicase had an apparent molecular mass of 90 kDa, as determined by its mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A tryptic peptide fragment of the polypeptide was sequenced followed by a BLAST search of GenBank with the tryptic peptide sequence. The search identified a 1.8 kb open reading frame previously designated as ykl017c on chromosome XI, that codes for a 78.3 kDa (683 amino acid) polypeptide. The important features of the polypeptide sequence of helicase A included a type I ATP/GTP binding motif, and a K E E R R L N V A M T R P R R sequence at the C-terminus that may be indicative of a nuclear localization signal which is required of a nuclear DNA helicase. The polypeptide sequence of helicase A appears to have homology to the DnaB helicase of E. coli (approximately 25%). The facts that these two helicases are vastly separated by evolution and retained similar structural and functional features, as demonstrated here, point to a possible significance of this limited homology. Although the amount of purified helicase A was limited, we have carried out necessary enzymatic characterization so that these data could be correlated with that of immunoaffinity-purified helicase A and recombinant helicase A expressed in heterologous systems.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.