Involvement of DNA polymerase delta and/or epsilon in joining UV-induced DNA single strand breaks in human fibroblasts (comparison of effects of butylphenyldeoxyguanosine with aphidicolin).

Abstract:

DNA polymerases involved in ultraviolet (UV)-induced DNA repair were studied in human fibroblasts using the inhibitors of DNA polymerases, aphidicolin which inhibits DNA polymerases alpha, delta and epsilon, and butylphenyldeoxyguanosine (BuPGdR) which inhibits DNA polymerase alpha strongly and weakly inhibits delta and epsilon. Both inhibitors inhibited replicative DNA synthesis in a dose dependent manner as measured by thymidine incorporation. However, BuPGdR did not accumulate single strand breaks in cells irradiated with 5 J/m2 UV-light even at the highest dosage tested, indicating that BuPGdR does not inhibit DNA repair. On the other hand, aphidicolin accumulated single strand breaks in UV-light irradiated cells. These results suggest that DNA polymerase delta and/or epsilon are mainly involved in UV-induced DNA repair.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.