Patch length of localized repair events: role of DNA polymerase I in mutY-dependent mismatch repair.

Abstract:

In vivo experiments with heteroduplex lambda genomes show that the ...
In vivo experiments with heteroduplex lambda genomes show that the MutY mismatch repair system of Escherichia coli defines an average repair tract that is shorter than 27 nucleotides and longer than 9 nucleotides and extends 3' from the corrected adenine. The phenotype of a mutant defective in DNA polymerase I shows that this enzyme plays a significant, though not an essential, role in the in vivo repair of apurinic sites generated by this system. Evidence is presented that in the absence of polymerase I the repair tracts are modestly longer than in the polA+ extending in the 5' direction from the corrected adenine, suggesting a role for another DNA polymerase.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.