DNA polymerase III is required for DNA repair in Saccharomyces cerevisiae.
Abstract:
We have studied the role of DNA polymerase III, encoded in S. cerevisiae by the CDC2 gene, in the repair of yeast nuclear DNA. It was found that the repair of MMS-induced single-strand breaks is defective in the DNA polymerase III temperature-sensitive mutant cdc2-1 at the restrictive temperature (37 degrees C), but is not affected at the permissive temperature (23 degrees C). Under conditions where only a small number of lesions was introduced into DNA (80% survival), the repair of MMS-induced damage could also be observed in the mutant at the restrictive temperature, although with low efficiency. When the quantity of lesions increased (50% survival or less), the repair of single-strand breaks was blocked. At the same time we observed a high rate of reversion in the meth, his and trp loci of the cdc2-1 mutant under restrictive conditions. The results presented suggest that DNA polymerase III is involved in the repair of MMS-induced lesions in yeast DNA and that the cdc2-1 mutation affects the proofreading activity of this polymerase.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.