DNA polymerase delta mediates excision repair in growing cells damaged with ultraviolet radiation.

Abstract:

In confluent, stationary phase cells, an aphidicolin-sensitive DNA polymerase mediates UV-induced excision repair, but the situation in growing cells is still controversial. The sensitivity of repair synthesis to aphidicolin, an inhibitor of DNA polymerases alpha and delta, was determined in growth phase and confluent normal human fibroblasts (AG1518) using several techniques. Repair synthesis in confluent cells was always inhibited by aphidicolin, no matter which measurement technique was used. However, the inhibition of repair synthesis in growth-phase cells by aphidicolin was only detectable when techniques unaffected by changes in nucleotide metabolism were used. We conclude that UV-induced repair synthesis in growing cells is actually aphidicolin sensitive, but that this inhibition can be obscured by changes in nucleotide metabolism. Employing butylphenyl-deoxyguanosine triphosphate, a potent inhibitor of polymerase alpha and a weak inhibitor of delta, we have obtained evidence that polymerase delta is responsible for repair synthesis in growth-phase cells following UV irradiation.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.