[Klenow fragment of DNA-polymerase I from E. coli. III. The role of internucleotide phosphate groups of the matrix in its binding with the enzyme].

Abstract:

The modification of Klenow fragment of DNA polymerase I E. coli was ...
The modification of Klenow fragment of DNA polymerase I E. coli was investigated by the affinity reagents d(Tp)2C[Pt2+(NH3)2OH](pT)7 and d(pT)2pC[Pt2+(NH3)2OH](pT)7. The template binding site of the enzyme was modified by these reagents in the presence of NaF (5 mM), which inhibits selectively the 3'----5'-exonuclease activity of the enzyme and therefore prevents the reagent from degradation. NaCN destroyed covalent bonds between reagents and enzyme, restoring activity of the Klenow fragment. The affinity of different ligands (inorganic phosphate, nucleoside monophosphates, oligonucleotides) to the template binding site of Klenow fragment was estimated. Minimal ligands capable to bind with the template site were shown to be triethylphosphate (Kd 290 microM) and phosphate (Kd 26 microM). Ligand affinity increases by the factor 1.76 per an added (monomer unit from phosphate to d(pT) and then for oligonucleotides d(Tp)nT (n 1 to 19-20). At n greater than 19-20, the ligand affinity remained constant. The complete ethylation of phosphodiester groups lowers affinity of the oligothymidylates to the enzyme by approximately 10 times, and comparable decrease of Pt2+-oligonucleotide affinity to polymerase is caused by the absence of Mn2+-ions. The data obtained led to suggestion that one Me2+-dependent electrostatic contact of the template phosphodiester group with the enzyme takes place (delta G = -1.45...-1.75 kcal/mole). Formation of a hydrogen bond with the oxygen atom of P = O group of the same template phosphate is also assumed (delta G = -4.8...-4.9 kcal/mole). Other template internucleotide phosphates do not interact with the enzyme but the bases of oligonucleotides take part in hydrophobic interactions with the template binding site. Gibbs energy changes by -0.34 kcal/mole when the template is lengthened by one unit.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.