Mechanisms of selective inhibition of 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I by nucleoside 5'-monophosphates.

Biochemistry (1978), Volume 17, Page 1603

Abstract:

The 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I can be selectively inhibited by nucleoside 5'-monophosphates, wherease the DNA polymerase activity is not inhibited. The results of kinetic studies show that nucleotides containing a free 3'-hydroxy group and a 5'-phosphoryl group are competitive inhibitors of the 3' to 5' exonuclease. Previous studies by Huberman and Kornberg [Huberman, J., and Kornberg, A. (1970), J. Biol. Chem. 245, 5326] have demonstrated a binding site for nucleoside 5'-monophosphates on DNA polymerase I. The Kdissoc values for nucleoside 5'-monophosphates determined in that study are comparable to the Ki values determined in the present study, suggesting that the specific binding site for nucleoside 5'-monophosphates represents the inhibitor site of the 3' to 5' exonuclease activity. We propose that (1) the binding site for nucleoside 5'-monophosphates on DNA polymerase I may represent the product site of the 3' to 5' exonuclease activity. (2) the primer terminus site for the 3' to 5' exonuclease activity is distinct from the primer terminus site for the polymerase activity, and (3) nucleoside 5'-monophosphates bind at the primer terminus site for the 3' to 5' exonuclease activity.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.