Coping with replication 'train wrecks' in Escherichia coli using Pol V, Pol II and RecA proteins.


DNA replication machineries tend to stall when confronted with damaged DNA template sites, causing the biochemical equivalent of a major 'train wreck'. A newly discovered bacterial DNA polymerase, Escherichia coli Pol V, acting in conjunction with the RecA protein, can exchange places with the stalled replicative Pol III core and catalyse 'error-prone' translesion synthesis. In contrast to Pol V-catalysed 'brute-force, sloppier copying', another SOS-induced DNA polymerase, Pol II, plays a pivotal role in an 'error-free', replication-restart DNA repair pathway and probably involves RecA-mediated homologous recombination.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.