Comparison of initiating abilities of primers of different length in polymerization reactions catalyzed by DNA polymerases from thermoacidophilic archaebacteria.
Biochimica et biophysica acta (1989), Volume 1008, Page 102
Abstract:
Optimal conditions for polymerization reaction catalyzed on poly(dA) and poly(dT) templates by DNA polymerases from thermoacidophilic archaebacteria--DNA polymerase A from Sulfolobus acidocaldarius and DNA polymerase B from Thermoplasma acidophilum--have been established. Values of Km and Vmax (60 degrees C) for a set of primers d(pA)n and d(pT)n have been estimated. Minimal primers for both enzymes are dNMP. Lengthening of primers by each mononucleotide increases their affinity about 2.16-fold. Linear dependence of log Km and of log vmax on the number of mononucleotide links in primers (n) has breaking point at n = 10. The value of Vmax is about 20% of that for decanucleotide. The affinity of the primer d(pA)9p(rib*) with a deoxyribosylurea residue at the 3'-end does not differ essentially from that of d(pA)9. Substitution of the 3'-terminal nucleotide of a complementary primer for a noncomplementary nucleotide, e.g., substitution of 3'-terminal A for C in d(pA)10 in the reaction catalyzed on poly(dT), decreases the affinity of a primer by one order of magnitude.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.