Comparison of initiating abilities of primers of different length in polymerization reactions catalyzed by DNA polymerases from thermoacidophilic archaebacteria.


Optimal conditions for polymerization reaction catalyzed on poly(dA) ...
Optimal conditions for polymerization reaction catalyzed on poly(dA) and poly(dT) templates by DNA polymerases from thermoacidophilic archaebacteria--DNA polymerase A from Sulfolobus acidocaldarius and DNA polymerase B from Thermoplasma acidophilum--have been established. Values of Km and Vmax (60 degrees C) for a set of primers d(pA)n and d(pT)n have been estimated. Minimal primers for both enzymes are dNMP. Lengthening of primers by each mononucleotide increases their affinity about 2.16-fold. Linear dependence of log Km and of log vmax on the number of mononucleotide links in primers (n) has breaking point at n = 10. The value of Vmax is about 20% of that for decanucleotide. The affinity of the primer d(pA)9p(rib*) with a deoxyribosylurea residue at the 3'-end does not differ essentially from that of d(pA)9. Substitution of the 3'-terminal nucleotide of a complementary primer for a noncomplementary nucleotide, e.g., substitution of 3'-terminal A for C in d(pA)10 in the reaction catalyzed on poly(dT), decreases the affinity of a primer by one order of magnitude.





new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.