DNA damage-induced mutagenesis : a novel target for cancer prevention.

Molecular interventions (2001), Volume 1, Page 269

Abstract:

Tolerance to some degree of unrepaired DNA damage is crucial for cell survival-more specifically, for the sustained functionality of the DNA replication machinery-in the presence of adverse (genotoxic) conditions. At least two mechanisms ensure such tolerance: template switching and lesion bypass. Lesion bypass, whereby unrepaired damaged DNA serves as template, involves the Y family of DNA polymerases; lesion bypass can be error-free or error-prone, depending on the nucleotide incorporated during translesion synthesis. Error-prone lesion bypass constitutes a major mechanism of mutagenesis and, in eukaryotes, is primarily effected by the DNA polymerase zeta (Polzeta) pathway. A relationship between the Y family polymerases and the Polzeta pathway is thus implicated, and conforms to the two-polymerase two-step model of lesion bypass. Based on the mutagenesis hypothesis of cancer formation, DNA damage-induced mutagenesis and its underlying molecular biology offer an intriguing potential target for cancer prevention.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.