Replication-related activities establish cohesion between sister chromatids.

Abstract:

Replicated sister chromatids are held together from their synthesis in S phase to their separation in anaphase. The process of sister chromatid cohesion is essential for the proper segregation of chromosomes in eukaryotic cells. Recent studies in Saccharomyces cerevisiae have advanced our understanding of how sister chromatid cohesion is established, maintained, and dissolved during the cell cycle. Historical observations have suggested that establishment of cohesion is roughly coincident with replication fork passage. Emerging evidence now indicates that replication fork components, such as PCNA, a novel DNA polymerase, Trf4p/Pol sigma (formerly Trf4p/Pol kappa), and a modified clamp-loader complex, actively participate in the process of the cohesion establishment. Here, we review the molecular events in the chromosome cycle with respect to cohesion. Failure of sister chromatid cohesion results in the aneuploidy characteristic of many birth defects and tumors in humans.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.