Intron conservation in the DNA polymerase gene encoded by Chlorella viruses.


Previously we reported that 19 of 42 viruses that infect Chlorella strain NC64A (NC64A viruses) contain a short, nuclear-located, spliceosomal-processed intron in a pyrimidine dimer-specific glycosylase/apyrimidine lyase (pdg) gene. Surprisingly, the nucleotide sequence of the intron region is more conserved than the exon regions of the gene (L. Sun et al., 2000, J. Mol. Evol. 50, 82-92). For comparative purposes, we determined the nucleotide sequence of a similar intron type and its flanking coding regions in the DNA polymerase (dnapol) gene from the same 42 NC64A viruses and also 5 viruses that infect Chlorella strain Pbi. Thirty-eight of the 42 NC64A viruses contained a 101-nucleotide intron and the remaining 4 had an 86-nucleotide intron located in the same position in dnapol. The 4 viruses with the smaller intron in dnapol also have a smaller intron in their pdg gene. There was no intron in the dnapol gene of the 5 Pbi viruses. Phylogenetic analyses indicate that the dnapol genes containing the 86-nucleotide intron represent the ancestral condition among the NC64A viruses. The intron in the dnapol gene is phase 0 (keeps codons intact), which differs from the phase 1 intron in the pdg gene. The intron in the dnapol gene, unlike the pdg intron, was conserved (83 to 100% identical) to about the same extent as the coding regions of the gene (78 to 100% identical).




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.