Molecular microbiology

(Mol Microbiol) ISSNs: , 1365-2958

References in Molecular microbiology:

Title Authors Year
DNA polymerase switching: effects on spontaneous mutagenesis in Escherichia coli. Curti E, McDonald JP, Mead S, Woodgate R 2009
Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Makiela-Dzbenska K, Jaszczur M, Banach-Orlowska M, Jonczyk P, Schaaper RM, Fijalkowska I 2009
The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication. Johnsen L, Flåtten I, Morigen , Dalhus B, Bjørås M, Waldminghaus T, Skarstad K 2011
Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA. Xing G, Kirouac KN, Shin YJ, Bell SD, Ling H 2009
DNA polymerase III of Mycoplasma pulmonis: isolation and characterization of the enzyme and its structural gene, polC. Barnes MH, Tarantino PM, Spacciapoli P, Brown NC, Yu H, Dybvig K 1994
DNA polymerase X from Deinococcus radiodurans possesses a structure-modulated 3'-->5' exonuclease activity involved in radioresistance. Blasius M, Shevelev IV, Jolivet E, Sommer S, Hübscher U 2006
Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp. Grompone G, Seigneur M, Ehrlich SD, Michel B 2002
Error-prone DNA polymerase IV is controlled by the stress-response sigma factor, RpoS, in Escherichia coli. Layton JC, Foster PL 2003
A new in vivo termination function for DNA polymerase I of Escherichia coli K12. Markovitz A 2005
The 5' to 3' exonuclease activity of DNA polymerase I is essential for Streptococcus pneumoniae. Díaz A, Lacks SA, López P 1992
Overproduction of Escherichia coli DNA polymerase DinB (Pol IV) inhibits replication fork progression and is lethal. Uchida K, Furukohri A, Shinozaki Y, Mori T, Ogawara D, Kanaya S, Nohmi T, Maki H, Akiyama MT 2008
Characterization of the bacteriophage phi29-encoded protein p16.7: a membrane protein involved in phage DNA replication. Meijer WJ, Serna-Rico A, Salas M 2001
DNA polymerase template switching at specific sites on the phi29 genome causes the in vivo accumulation of subgenomic phi29 DNA molecules. Murthy V, Meijer WJ, Blanco L, Salas M 1998
Involvement of an X family DNA polymerase in double-stranded break repair in the radioresistant organism Deinococcus radiodurans. Lecointe F, Shevelev IV, Bailone A, Sommer S, Hübscher U 2004
DNA polymerase I acts in translesion synthesis mediated by the Y-polymerases in Bacillus subtilis. Duigou S, Ehrlich SD, Noirot P, Noirot-Gros MF 2005
Mutant forms of the Escherichia colibeta sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Sutton MD, Duzen JM, Maul RW 2005
Mutations produced by DNA polymerase III holoenzyme of Escherichia coli after in vitro synthesis in the absence of single-strand binding protein. Carraway M, Rewinski C, Marinus MG 1990
Mitochondrial DNA polymerase POLIB is essential for minicircle DNA replication in African trypanosomes. Bruhn DF, Mozeleski B, Falkin L, Klingbeil MM 2010
Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III. Viguera E, Petranovic M, Zahradka D, Germain K, Ehrlich DS, Michel B 2003
Multiple roles for DNA polymerase I in establishment and replication of the promiscuous plasmid pLS1. Díaz A, Lacks SA, López P 1994
DNA polymerase kappa from Trypanosoma cruzi localizes to the mitochondria, bypasses 8-oxoguanine lesions and performs DNA synthesis in a recombination intermediate. Rajão MA, Passos-Silva DG, DaRocha WD, Franco GR, Macedo AM, Pena SD, Teixeira SM, Machado CR 2009
Distinct beta-clamp interactions govern the activities of the Y family PolIV DNA polymerase. Wagner JE, Etienne H, Fuchs RP, Cordonnier AM, Burnouf DY 2009
A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader. Yano ST, Rothman-Denes LB 2011
Intrinsic properties of the two replicative DNA polymerases of Pyrococcus abyssi in replicating abasic sites: possible role in DNA damage tolerance? Palud A, Villani G, L'Haridon S, Querellou J, Raffin JP, Henneke G 2008
MutS deficiency and activity of the error-prone DNA polymerase IV are crucial for determining mucA as the main target for mucoid conversion in Pseudomonas aeruginosa. Moyano AJ, Luján AM, Argaraña CE, Smania AM 2007
Mutations in the gene 5 DNA polymerase of bacteriophage T7 suppress the dominant lethal phenotype of gene 2.5 ssDNA binding protein lacking the C-terminal phenylalanine. Marintcheva B, Qimron U, Yu Y, Tabor S, Richardson CC, Richardson CC 2009
Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. McHenry CS 2003
Specific interactions of three proliferating cell nuclear antigens with replication-related proteins in Aeropyrum pernix. Imamura K, Fukunaga K, Kawarabayasi Y, Ishino Y 2007
Escherichia coli DNA polymerase III is responsible for the high level of spontaneous mutations in mutT strains. Yamada M, Shimizu M, Katafuchi A, Grúz P, Fujii S, Usui Y, Fuchs RP, Nohmi T 2012
Mismatch repair causes the dynamic release of an essential DNA polymerase from the replication fork. Klocko AD, Schroeder JW, Walsh BW, Lenhart JS, Evans ML, Simmons LA 2011
New insights in the ϕ29 terminal protein DNA-binding and host nucleoid localization functions. Holguera I, Redrejo-Rodríguez M, Salas M, Muñoz-Espín D 2013
A single-molecule approach to DNA replication in Escherichia coli cells demonstrated that DNA polymerase III is a major determinant of fork speed. Pham TM, Tan KW, Sakumura Y, Okumura K, Maki H, Akiyama MT 2013

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.