Staying straight with A-tracts: a DNA analog of the HIV-1 polypurine tract.

Abstract:

The polypurine tract (PPT) from the HIV-1 genome is resistant to digestion by reverse transcriptase following (-)-strand synthesis and is used to prime (+)-strand synthesis during retroviral replication. We have determined the crystal structure of the asymmetric DNA/DNA analog16-mer duplex (CTTTTTAAAAGAAAAG/CTTTTCTTTTAAAAAG) comprising most of the "visible" portion of the RNA:DNA hybrid from the polypurine tract of HIV-1, which was previously reported in a complex with HIV-1 reverse transcriptase. Our 16-mer completely encompasses a 10-mer DNA duplex analog of the HIV-1 PPT. We report here a detailed analysis of our B' form 16-mer DNA structure, including three full pure A-tracts, as well as a comparative structural analysis with polypurine tract and other A-tract-containing nucleic acid structures. Our analysis reveals that the polypurine tract structures share structural features despite being different nucleic acid forms (i.e. DNA:DNA versus RNA:DNA). In addition, the previously reported A-tract-containing DNA molecules bound to topoisomerase I are remarkably similar to our polypurine tract 16-mer structure. On the basis of our analysis, we suggest that the specific topology of long pure A-tracts is remarkably comparable across a wide array of biological environments.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.