Staying straight with A-tracts: a DNA analog of the HIV-1 polypurine tract.


The polypurine tract (PPT) from the HIV-1 genome is resistant to digestion by reverse transcriptase following (-)-strand synthesis and is used to prime (+)-strand synthesis during retroviral replication. We have determined the crystal structure of the asymmetric DNA/DNA analog16-mer duplex (CTTTTTAAAAGAAAAG/CTTTTCTTTTAAAAAG) comprising most of the "visible" portion of the RNA:DNA hybrid from the polypurine tract of HIV-1, which was previously reported in a complex with HIV-1 reverse transcriptase. Our 16-mer completely encompasses a 10-mer DNA duplex analog of the HIV-1 PPT. We report here a detailed analysis of our B' form 16-mer DNA structure, including three full pure A-tracts, as well as a comparative structural analysis with polypurine tract and other A-tract-containing nucleic acid structures. Our analysis reveals that the polypurine tract structures share structural features despite being different nucleic acid forms (i.e. DNA:DNA versus RNA:DNA). In addition, the previously reported A-tract-containing DNA molecules bound to topoisomerase I are remarkably similar to our polypurine tract 16-mer structure. On the basis of our analysis, we suggest that the specific topology of long pure A-tracts is remarkably comparable across a wide array of biological environments.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.