Influence of neighboring bases on DNA polymerase insertion and proofreading fidelity.


We propose a model to describe the frequencies of site-specific base substitution errors by DNA polymerase. In the model, nucleotide misinsertion frequencies are determined by 5'-nearest-neighbor base stacking and 3'-exonucleolytic proofreading efficiencies are governed by the relative proportions of G . C base pairs in the region surrounding the misinserted nucleotide. The model is used to analyze the frequency of replacing dAMP by 2-aminopurine deoxyribonucleotide with purified bacteriophage T4 L141 antimutator DNA polymerase at 57 sites on phi X174 DNA (Pless, R. C., and Bessman, M.J. (1983) Biochemistry 22, 4905-4915). A linear least-squares fit yields a correlation coefficient of 0.83 and a standard deviation of 2.8% between predicted and observed results. Four to five base pairs on each side of the 2-aminopurine incorporation site, approximately one double-helical turn, are found to exert a maximal influence on proofreading. Thermal melting data on native and synthetic DNA are used to deduce base-stacking energies for nearest-neighbor doublets including those involving 2-aminopurine. The inclusion of base-stacking energies in the model calculations leads to predictions similar to those based on the use of empirical parameters for individual base pairs.



Nucleotide Analogs / Template Lesions, Fidelity, Nucleotide Incorporation


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.