The human REV1 gene codes for a DNA template-dependent dCMP transferase.


DNA is frequently damaged by various physical and chemical agents. DNA ...
DNA is frequently damaged by various physical and chemical agents. DNA damage can lead to mutations during replication. In the yeast Saccharomyces cerevisiae, the damage-induced mutagenesis pathway requires the Rev1 protein. We have isolated a human cDNA homologous to the yeast REV1 gene. The human REV1 cDNA consists of 4255 bp and codes for a protein of 1251 amino acid residues with a calculated molecular weight of 138 248 Da. The human REV1 gene is localized between 2q11.1 and 2q11.2. We show that the human REV1 protein is a dCMP transferase that specifically inserts a dCMP residue opposite a DNA template G. In addition, the human REV1 transferase is able to efficiently and specifically insert a dCMP opposite a DNA template apurinic/apyrimidinic (AP) site or a uracil residue. These results suggest that the REV1 transferase may play a critical role during mutagenic translesion DNA synthesis bypassing a template AP site in human cells. Consistent with its role as a fundamental mutagenic protein, the REV1 gene is ubiquitously expressed in various human tissues.



Mutational Analysis, Historical Protein Properties (MW, pI, ...), Nucleotide Analogs / Template Lesions, Accessory Proteins/Complexes, Nucleotide Incorporation


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.