The human REV1 gene codes for a DNA template-dependent dCMP transferase.

Abstract:

DNA is frequently damaged by various physical and chemical agents. DNA damage can lead to mutations during replication. In the yeast Saccharomyces cerevisiae, the damage-induced mutagenesis pathway requires the Rev1 protein. We have isolated a human cDNA homologous to the yeast REV1 gene. The human REV1 cDNA consists of 4255 bp and codes for a protein of 1251 amino acid residues with a calculated molecular weight of 138 248 Da. The human REV1 gene is localized between 2q11.1 and 2q11.2. We show that the human REV1 protein is a dCMP transferase that specifically inserts a dCMP residue opposite a DNA template G. In addition, the human REV1 transferase is able to efficiently and specifically insert a dCMP opposite a DNA template apurinic/apyrimidinic (AP) site or a uracil residue. These results suggest that the REV1 transferase may play a critical role during mutagenic translesion DNA synthesis bypassing a template AP site in human cells. Consistent with its role as a fundamental mutagenic protein, the REV1 gene is ubiquitously expressed in various human tissues.

Polymerases:

Topics:

Accessory Proteins/Complexes, Historical Protein Properties (MW, pI, ...), Mutational Analysis, Nucleotide Incorporation, Nucleotide Analogs / Template Lesions

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.