Dominant negative rat DNA polymerase beta mutants interfere with base excision repair in Saccharomyces cerevisiae.

Abstract:

DNA polymerase beta is one of the smallest known eukaryotic DNA polymerases. This polymerase has been very well characterized in vitro, but its functional role in vivo has yet to be determined. Using a novel competition assay in Escherichia coli, we isolated two DNA polymerase beta dominant negative mutants. When we overexpressed the dominant negative mutant proteins in Saccharomyces cerevisiae, the cells became sensitive to methyl methanesulfonate. Interestingly, overexpression of the same polymerase beta mutant proteins did not confer sensitivity to UV damage, strongly suggesting that the mutant proteins interfere with the process of base excision repair but not nucleotide excision repair in S. cerevisiae. Our data implicate a role for polymerase IV, the S. cerevisiae polymerase beta homolog, in base excision repair in S. cerevisiae.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.