Distinct pools of proliferating cell nuclear antigen associated to DNA replication sites interact with the p125 subunit of DNA polymerase delta or DNA ligase I.


Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and cell cycle control. PCNA is a homotrimeric ring that, when encircling DNA, is not easily extractable. Consequently, the dynamics of protein-protein interactions established by PCNA at DNA replication sites is not well understood. We have used DNase I to release DNA-bound PCNA together with replication proteins including the p125-catalytic subunit of DNA polymerase delta (p125-pol delta), DNA ligase I, cyclin A, and cyclin-dependent kinase 2 (CDK2). Interaction with these proteins was investigated by immunoprecipitation with antibodies binding near the interdomain connector loop or to the C-terminal domain of PCNA, respectively, or with antibodies to p125-pol delta or DNA ligase I. PCNA interaction with p125-pol delta or DNA ligase I was detected only by the latter antibodies, and found to be mutually exclusive. In contrast, antibodies to PCNA co-immunoprecipitated only CDK2. A GST-p21(waf1/cip1) C-terminal peptide displaced p125-pol delta and DNA ligase I, but not CDK2, from PCNA. These results suggest that PCNA trimers bound to DNA during the S phase are organized as distinct pools able to bind selectively different partners. Among them, p125-pol delta and DNA ligase I interact with PCNA in a mutually exclusive manner.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.