The 3'-->5' exonucleases of DNA polymerases delta and epsilon and the 5'-->3' exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae.

Abstract:

Replication fidelity is controlled by DNA polymerase proofreading and postreplication mismatch repair. We have genetically characterized the roles of the 5'-->3' Exo1 and the 3'-->5' DNA polymerase exonucleases in mismatch repair in the yeast Saccharomyces cerevisiae by using various genetic backgrounds and highly sensitive mutation detection systems that are based on long and short homonucleotide runs. Genetic interactions were examined among DNA polymerase epsilon (pol2-4) and delta (pol3-01) mutants defective in 3'-->5' proofreading exonuclease, mutants defective in the 5'-->3' exonuclease Exo1, and mismatch repair mutants (msh2, msh3, or msh6). These three exonucleases play an important role in mutation avoidance. Surprisingly, the mutation rate in an exo1 pol3-01 mutant was comparable to that in an msh2 pol3-01 mutant, suggesting that they participate directly in postreplication mismatch repair as well as in other DNA metabolic processes.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.