Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway.

Abstract:

Mutagenic abasic (AP) sites are generated directly by DNA-damaging ...
Mutagenic abasic (AP) sites are generated directly by DNA-damaging agents or by DNA glycosylases acting in base excision repair. AP sites are corrected via incision by AP endonucleases, removal of deoxyribose 5-phosphate, repair synthesis, and ligation. Mammalian DNA polymerase beta (Polbeta) carries out most base excision repair synthesis and also can excise deoxyribose 5-phosphate after AP endonuclease incision. Yeast two-hybrid analysis now indicates protein-protein contact between Polbeta and human AP endonuclease (Ape protein). In vitro, binding of Ape protein to uncleaved AP sites loads Polbeta into a ternary complex with Ape and the AP-DNA. After incision by Ape, only Polbeta exhibits stable DNA binding. Kinetic experiments indicated that Ape accelerates the excision of 5'-terminal deoxyribose 5-phosphate by Polbeta. Thus, the two central players of the base excision repair pathway are coordinated in sequential reactions.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.