Error-free replicative bypass of (6-4) photoproducts by DNA polymerase zeta in mouse and human cells.


The ultraviolet (UV)-induced (6-4) pyrimidine-pyrimidone photoproduct [(6-4) PP] confers a large structural distortion in DNA. Here we examine in human cells the roles of translesion synthesis (TLS) DNA polymerases (Pols) in promoting replication through a (6-4) TT photoproduct carried on a duplex plasmid where bidirectional replication initiates from an origin of replication. We show that TLS contributes to a large fraction of lesion bypass and that it is mostly error-free. We find that, whereas Pol eta and Pol iota provide alternate pathways for mutagenic TLS, surprisingly, Pol zeta functions independently of these Pols and in a predominantly error-free manner. We verify and extend these observations in mouse cells and conclude that, in human cells, TLS during replication can be markedly error-free even opposite a highly distorting DNA lesion.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.