Elucidating the kinetic mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase B1.

Biochemistry (2009), Volume 48, Page 7502


Transient-state kinetic techniques were used to resolve the kinetic mechanism of DNA polymerization catalyzed by an exonuclease-deficient mutant of Sulfolobus solfataricus P2 DNA polymerase B1 (PolB1 exo-). Here, we report the kinetic parameters of several elementary steps for the forward polymerization reaction. PolB1 exo- binds tightly to DNA (K(d)(DNA) = 1.8 nM) and a correct incoming nucleotide (apparent K(d)(dTTP) = 11 microM). Moreover, several lines of kinetic evidence suggested that correct nucleotide incorporation catalyzed by PolB1 exo- was limited by a protein conformational change which precedes the chemistry step. The utilization of an "induced fit" mechanism by PolB1 exo- was supported by the following: a small, alpha-thio elemental effect of 1.5, varying DNA dissociation rates for the binary complex (0.043 s(-1)) as well as ternary complexes before (0.18 s(-1)) and after (0.0071 s(-1)) a conformational change, a greater amplitude for the pulse-chase than the pulse-quench reaction, and an activation energy barrier of 38 kcal/mol which is greater than the predicted values of phosphodiester bond formation both in solution and within a polymerase active site. Lastly, PolB1 exo- exhibited a low processivity value of 15, thereby suggesting a protein cofactor confers this replicative DNA polymerase with higher processivity in vivo.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.