Insights into the high fidelity of a DNA polymerase I mutant.

J Mol Model (2009), Volume 15, Page 1271


Mutants of DNA polymerase I from Thermus aquaticus (Taq) with higher fidelity compared to the wild type enzyme were identified in an earlier study by Summerer et al. (Angew Chem Int Ed 44:4712-4715, 2005). Here, one of these mutants, PLQ (consensus residues 879-881), was analysed using molecular dynamics simulations. This was done by calculating the structures of the ternary complex comprising the enzyme, the DNA primer and template as well as the incoming nucleotide before the chemical reaction for the Watson-Crick and different mismatched base pairings. The results show that the high fidelity of the mutant can be explained partly by different specific interactions between the amino acids of the enzyme and the DNA primer end as well as, in some mismatches, a displacement of the primer relative to the incoming deoxyribonucleoside triphosphate and the catalytic magnesium ion. This displacement is facilitated by reduced steric interactions between the enzyme and the DNA.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.