Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage T7 DNA polymerase and Escherichia coli DNA polymerase I.

Abstract:

Incorporation of dideoxynucleotides by T7 DNA polymerase and Escherichia coli DNA polymerase I is more efficient when Mn2+ rather than Mg2+ is used for catalysis. Substituting Mn2+ for Mg2+ reduces the discrimination against dideoxynucleotides approximately 100-fold for DNA polymerase I and 4-fold for T7 DNA polymerase. With T7 DNA polymerase and Mn2+, dideoxynucleotides and deoxynucleotides are incorporated at virtually the same rate. Mn2+ also reduces the discrimination against other analogs with modifications in the furanose moiety, the base, and the phosphate linkage. A metal buffer, isocitrate, expands the MnCl2 concentration range effective in catalyzing DNA synthesis. The lack of discrimination against dideoxynucleoside triphosphates using T7 DNA polymerase and Mn2+ results in uniform terminations of DNA sequencing reactions, with the intensity of adjacent bands on polyacrylamide gels varying in most instances by less than 10%.

Polymerases:

Topics:

Mutational Analysis, Nucleotide Analogs / Template Lesions, Nucleotide Incorporation

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.