RAD18 signals DNA polymerase IOTA to stalled replication forks in cells entering S-phase with DNA damage.


Endogenously generated reactive oxygen species and genotoxic ...
Endogenously generated reactive oxygen species and genotoxic carcinogens can covalently modify bases in cellular DNA. If not recognized and removed prior to S-phase of the cell cycle, such modifications can block DNA replication fork progression. If blocked forks are not are not resolved, they result in double strand breaks and cell death. Recent data indicate that the process of translesion DNA synthesis (TLS) is a highly conserved mechanism for bypassing lesions in template DNA. Although not fully understood, in yeast a ubiquitin ligase (RAD18) signals error-prone Y family polymerases to the blocked fork to bypass the damage with potentially mutagenic consequences. Homologs of the yeast proteins are found in higher eukaryotic cells, including human. We are examining the hypothesis that RAD18 acts as a proximal signal to Y-family polymerases to bypass damage, in a manner analogous to yeast but with additional layers of complexity. Here we report that RAD18 accumulates in nuclear foci after UV irradiation only in cells entering S-phase with DNA damage. These foci co-localize with proliferating cell nuclear antigen (PCNA). In addition, a newly described DNA polymerase, pol iota, also forms nuclear foci in a damage- and S-phase dependent manner. These data support our overall hypothesis that RAD18 accumulates at blocked forks and initiates the signal to recruit TLS polymerases.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.