Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement.


A single copy of bacteriophage T7 DNA polymerase and DNA helicase ...
A single copy of bacteriophage T7 DNA polymerase and DNA helicase advance the replication fork with a processivity greater than 17,000 nucleotides. Nonetheless, the polymerase transiently dissociates from the DNA without leaving the replisome. Ensemble and single-molecule techniques demonstrate that this dynamic processivity is made possible by two modes of DNA polymerase-helicase interaction. During DNA synthesis the polymerase and the helicase interact at a high-affinity site. In this polymerizing mode, the polymerase dissociates from the DNA approximately every 5000 bases. The polymerase, however, remains bound to the helicase via an electrostatic binding mode that involves the acidic C-terminal tail of the helicase and a basic region in the polymerase to which the processivity factor also binds. The polymerase transfers via the electrostatic interaction around the hexameric helicase in search of the primer-template.





new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.