Tumor suppressor APC blocks DNA polymerase beta-dependent strand displacement synthesis during long patch but not short patch base excision repair and increases sensitivity to methylmethane sulfonate.


In the present investigation, we report a previously unsuspected ...
In the present investigation, we report a previously unsuspected function of the tumor suppressor protein, APC (adenomatous polyposis coli), in the regulation of base excision repair (BER). We identified a proliferating cell nuclear antigen-interacting protein-like box sequence in APC that binds DNA polymerase beta and blocks DNA polymerase beta-mediated strand-displacement synthesis in long patch BER without affecting short patch BER. We further showed that the colon cancer cell line expressing the wild-type APC gene was more sensitive to a DNA-methylating agent due to decreased DNA repair by long patch BER than the cell line expressing the mutant APC gene lacking the proliferating cell nuclear antigen-interacting protein-like box. Experiments based on RNA interference showed that the wild-type APC gene expression is required for DNA methylation-induced sensitivity of colon cancer cells. Thus, APC may play a critical role in determining utilization of long versus short patch BER pathways and affect the susceptibility of colon cancer cells to carcinogenic and chemotherapeutic agents.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.