Translesion synthesis of acetylaminofluorene-dG adducts by DNA polymerase zeta is stimulated by yeast Rev1 protein.
Nucleic acids research (2004), Volume 32, Page 1122
Abstract:
Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase zeta (Polzeta) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polzeta and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is not well understood about the non-catalytic function of Rev1 in translesion synthesis. We have analyzed the role of Rev1 in translesion synthesis of an acetylaminofluorene (AAF)-dG DNA adduct. Purified yeast Rev1 was essentially unresponsive to a template AAF-dG DNA adduct, in contrast to its efficient C insertion opposite a template 1,N6-ethenoadenine adduct. Purified yeast Polzeta was very inefficient in the bypass of the AAF-dG adduct. Combining Rev1 and Polzeta, however, led to a synergistic effect on translesion synthesis. Rev1 protein enhanced Polzeta-catalyzed nucleotide insertion opposite the AAF-dG adduct and strongly stimulated Polzeta-catalyzed extension from opposite the lesion. Rev1 also stimulated the deficient synthesis by Polzeta at the very end of undamaged DNA templates. Deleting the C-terminal 205 aa of Rev1 did not affect its dCMP transferase activity, but abolished its stimulatory activity on Polzeta-catalyzed extension from opposite the AAF-dG adduct. These results suggest that translesion synthesis of AAF-dG adducts by Polzeta is stimulated by Rev1 protein in yeast. Consistent with the in vitro results, both Polzeta and Rev1 were found to be equally important for error-prone translesion synthesis across from AAF-dG DNA adducts in yeast cells.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.