The human checkpoint Rad protein Rad17 is chromatin-associated throughout the cell cycle, localizes to DNA replication sites, and interacts with DNA polymerase epsilon.


The checkpoint Rad proteins Rad17, Rad9, Rad1, Hus1, ATR, and ATRIP ...
The checkpoint Rad proteins Rad17, Rad9, Rad1, Hus1, ATR, and ATRIP become associated with chromatin in response to DNA damage caused by genotoxic agents and replication inhibitors, as well as during unperturbed DNA replication in S phase. Here we show that murine Rad17 is phosphorylated at two sites that were previously shown to be modified in response to DNA damage, independent of DNA damage and ATM, in proliferating tissue. In contrast to studies with Xenopus laevis extracts but similar to observations in Schizosaccharomyces pombe, the level of chromatin-bound hRad17 remains relatively constant during the cell cycle and does not change significantly in response to DNA damage or replication block. However, phosphorylated hRad17 preferentially associates with the sites of ongoing DNA replication and interacts with the DNA replication protein, DNA polymerase epsilon. These results provide a link between the DNA damage checkpoint machinery and the replication apparatus and suggest that hRad17 may play a role in monitoring the progress of DNA replication via its interaction with DNA polymerase epsilon.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.