Error-prone replication for better or worse.


Precise genome duplication requires accurate copying by DNA ...
Precise genome duplication requires accurate copying by DNA polymerases and the elimination of occasional mistakes by proofreading exonucleases and mismatch repair enzymes. The commonly held belief that 'if something is worth doing, then it's worth doing well' normally applies to DNA replication and repair, however, there are exceptions. This review describes elements that are crucial to cell fitness, evolution and survival in the recently discovered error-prone DNA polymerases. Large numbers of errant DNA polymerases, spanning microorganisms to humans, are used to rescue stalled replication forks by copying damaged DNA and even undamaged DNA to generate 'purposeful' mutations that generate genetic diversity in times of stress. Here we focus on low-fidelity polymerases from bacteria, comparing Escherichia coli, archeabacteria and those most recently discovered in Gram-positive Bacilli, Streptococcus, pathogenic Mycobacterium and intein-containing cyanobacteria.




The review contains section "Error-prone family Y polymerases in Archaea" (Dpo4 and Dbh).


new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.