DNA polymerase beta: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes.


Pre-steady-state kinetic analysis was used to compare the catalytic ...
Pre-steady-state kinetic analysis was used to compare the catalytic properties of DNA polymerase beta (Pol beta) for single-base gap-filling and regular duplex DNA synthesis. The rate of polymerization (kpol) and the apparent equilibrium dissociation constant of dNTP (Kd) were determined with single-nucleotide gapped DNA substrates for all four possible correct base pairs and twelve possible incorrect base pairs, and the results were compared with those obtained previously with non-gapped primer/template duplex DNA substrates. For correct dNTP incorporation, the use of single-nucleotide gapped DNA led to significant decreases in the Kd of dNTP. Although kpol was little affected, the catalytic efficiency kpol/Kd increased significantly owing to the decreases in Kd. In contrast, for incorrect dNTP incorporation, the use of single-nucleotide gapped DNA substrates did not affect the Kd of dNTP appreciably but caused the kpol (and thus kpol/Kd) for incorrect dNTP incorporation to increase. As a consequence the fidelity of Pol beta was not significantly affected by the use of single-nucleotide gapped DNA substrates. In addition we show that under processive polymerization conditions the processivity of Pol beta increases in the gap-filling synthesis owing to a decreased rate of DNA dissociation. Finally, with a single-nucleotide gapped DNA substrate the rate-limiting conformational change step before chemistry was also observed. However, the preceding fast conformational change observed with duplex DNA substrates was not clearly detected. A possible cause is that in the complex with the gapped DNA, the 8 kDa N-terminal domain of Pol beta already exists in a closed conformation. This interpretation was supported by tryptic digestion experiments.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.