Template secondary structure can increase the error frequency of the DNA polymerase from Thermus aquaticus.

Loewen PC, Switala J
Gene (1995), Volume 164, Page 59
PubMed entry

Abstract:

Amplification of portions of the intergenic spacer between the katE ...
Amplification of portions of the intergenic spacer between the katE gene and cryptic cel operon of Escherichia coli was accomplished by the polymerase chain reaction using the DNA polymerase from Thermus aquaticus. Nine different segments were amplified and cloned without error, but one 83-bp fragment was amplified with a high error rate such that 32 of 34 selected clones had three or more nucleotide changes from the expected sequence. The changes were all located in two 9-bp segments immediately adjacent to the 3'-ends of the two primers. Moving the end points of the primers to increase the spacing between them resulted in the isolation of significantly fewer error-containing products. It is proposed that stem-loop structures in the template immediately downstream from the primers interfere with an early stage of elongation and cause misincorporation. This is supported by the observation that destabilisation of one of the stem-loop structures reduced the frequency of errors.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.