The 3'-->5' exonuclease associated with HeLa DNA polymerase epsilon.

Uitto L, Halleen J, Remes P, Kesti T, Syväoja JE
Chromosoma (1992), Volume 102, Page S142
PubMed entry

Abstract:

The 3'-->5' exonuclease activity of highly purified large form of ...
The 3'-->5' exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3' end of an oligonucleotide with a non-processive mechanism and leaves 5'-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3' end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slowed down when double-stranded region is reached. The preferential removal of a non-complementary 3' end and the nonprocessive mechanism are consistent with anticipated proofreading function. In addition to the 3'-->5' exonuclease activity, an 5'-->3' exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential component for the action of this enzyme in vivo. Contrary to the 3'-->5' exonuclease activity, the 5'-->3' exonuclease is separable from the polymerase activity.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.