In vitro bypass of UV-induced lesions by Escherichia coli DNA polymerase I: specificity of nucleotide incorporation.

Abstract:

A variety of DNA polymerases, synthesizing in vitro on an UV-irradiated phi X174 DNA template, terminate synthesis one nucleotide before the 3' pyrimidines of putative dimers on the template. We have devised a system using Escherichia coli DNA polymerase I (Klenow fragment) that can synthesize past at least some of these dimers. The bypass is carried out in a multistep process--first, the incorporation of nucleotides opposite the pyrimidines in the dimer and, then, the addition of nucleotides complementary to the bases distal to the dimer. The insertion of a nucleotide opposite the first (3') pyrimidine of a putative dimer in the presence of Mn2+ occurs in a concentration-dependent fashion with a 3- to 4-fold preference for purine nucleotides over pyrimidine nucleotides. In the presence of Mg2+, insertion is less frequent. Correlation of these results with in vivo mutation data suggests a role for the polymerase in determining the spectrum of base substitution mutagenesis in SOS induced cells.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.