A study of the mechanism of T4 DNA polymerase with diastereomeric phosphorothioate analogues of deoxyadenosine triphosphate.

Abstract:

T4 DNA polymerase copolymerizes the SP isomers of 2'-deoxyadenosine 5'-O-(1-thiotriphosphate) and 5'-O-(2-thiotriphosphate) with dTTP onto a poly(d(A-T) template in the presence of various metal ions. The corresponding RP diastereomers are inactive, independent of the metal ion used. The polymer resulting from the polymerization of the SP diastereomer of 2'-deoxyadenosine 5'-O-(1-thiotriphosphate) and dTTP can be degraded by the 5' leads to 3' exonuclease activity of Escherichia coli DNA polymerase I and alkaline phosphatase (Brody, R. S., and Frey, P. A. (1981) Biochemistry 20, 1245-1252) to d(Tp(S)A). This material has the RP configuration as determined by comparison with the RP and SP diastereomers obtained by chemical synthesis and preparative separation by high performance liquid chromatography. This result indicates inversion of configuration at the alpha-phosphorus in the nucleotidyl transfer reaction and is compatible with the absence of a covalent enzyme intermediate.

Polymerases:

T4

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.