Mechanism of 3' to 5' exonuclease associated with phage T5-induced DNA polymerase: processiveness and template specificity.

Abstract:

T5-induced DNA polymerase has an associated 3' to 5' exonuclease ...
T5-induced DNA polymerase has an associated 3' to 5' exonuclease activity. Both single-stranded and duplex DNA are hydrolyzed by this enzyme in a quasi-processive manner. This is indicated by the results of polymer-challenge experiments utilizing product analysis techniques. Due to the quasi-processive mode of hydrolysis, the kinetics of label release from the 3'-terminally labeled oligonucleotide substrates, annealed to complementary homopolymers, show an initial high rate of hydrolysis. In the case of both single-stranded and duplex DNA substrates, hydrolysis seems to continue, at best, up to the point where the enzyme is five or six nucleotides away from the 5-end. The enzyme carries out mismatch repair, as evidenced by experiments with primer molecules containing improper base residues at the 3'-OH terminus. Control experiments with complementary base residues at the 3'-end indicate that extensive removal of terminal residue takes place in the presence of dNTP's only when such residues are "improper" in the Watson-Crick sense.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.